Error Estimates for Approximations of Distributed Order Time Fractional Diffusion with Nonsmooth Data

نویسندگان

  • Bangti Jin
  • Raytcho Lazarov
  • Dongwoo Sheen
  • Zhi Zhou
  • B. Jin
  • R. Lazarov
  • D. Sheen
  • Z. Zhou
چکیده

In this work, we consider the numerical solution of a distributed order subdiffusion model, arising in the modeling of ultra-slow diffusion processes. We develop a space semidiscrete scheme based on the Galerkin finite element method, and establish error estimates optimal with respect to data regularity in L2(Ω) and H1(Ω) norms for both smooth and nonsmooth initial data. Further, we propose two fully discrete schemes, based on the Laplace transform and convolution quadrature generated by the backward Euler method, respectively, and provide optimal L2(Ω) error estimates, which exhibits exponential convergence and first-order convergence in time, respectively. Extensive numerical experiments are provided to verify the error estimates for both smooth and nonsmooth initial data. MSC 2010 : Primary 65M60; Secondary 35R11, 65M15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

A numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative

In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...

متن کامل

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid

We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data [Formula: see text], including [Formula: ...

متن کامل

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016